Interface effects in spin-dependent tunneling

نویسندگان

  • Evgeny Y. Tsymbal
  • Kirill D. Belashchenko
  • Julian P. Velev
  • Sitaram Jaswal
  • Mark van Schilfgaarde
  • Ivan I. Oleynik
  • Derek A. Stewart
  • S. S. Jaswal
  • I. I. Oleynik
  • D. A. Stewart
چکیده

In the past few years the phenomenon of spin dependent tunneling (SDT) in magnetic tunnel junctions (MTJs) has aroused enormous interest and has developed into a vigorous field of research. The large tunneling magnetoresistance (TMR) observed in MTJs garnered much attention due to possible application in random access memories and magnetic field sensors. This led to a number of fundamental questions regarding the phenomenon of SDT. One such question is the role of interfaces in MTJs and their effect on the spin polarization of the tunneling current and TMR. In this paper we consider different models which suggest that the spin polarization is primarily determined by the electronic and atomic structure of the ferromagnet/insulator interfaces rather than by their bulk properties. First, we consider a simple tight-binding model which demonstrates that the existence of interface states and their contribution to the tunneling current depend on the degree of hybridization between the orbitals on metal and insulator atoms. The decisive role of the interfaces is further supported by studies of spin-dependent tunneling within realistic first-principles models of Co/vacuum/Al, Co/Al2O3/Co, Fe/MgO/Fe, and Co/SrTiO3/Co MTJs. We find that variations in the atomic potentials and bonding strength near the interfaces have a profound effect resulting in the formation of interface resonant states, which dramatically affect the spin polarization and TMR. The strong sensitivity of the tunneling spin polarization and TMR to the interface atomic and electronic structure dramatically expands the possibilities for engineering optimal MTJ properties for device applications. PACS: 72.25.Mk 73.40.Gk 73.40.Rw 73.23.-b

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of interface states on spin-dependent tunneling in Fe/MgO/Fe tunnel junctions

Effect of interface states on spin-dependent tunneling in Fe/MgO/ Fe tunnel junctions" (2005).

متن کامل

Reversal of spin polarization in Fe/GaAs (001) driven by resonant surface states: first-principles calculations.

A minority-spin resonant state at the Fe/GaAs(001) interface is predicted to reverse the spin polarization with the voltage bias of electrons transmitted across this interface. Using a Green's function approach within the local spin-density approximation, we calculate the spin-dependent current in a Fe/GaAs/Cu tunnel junction as a function of the applied bias voltage. We find a change in sign o...

متن کامل

Spin-dependent hot electron transport in Co/Cu thin films

Hot-electron transport in Co/Cu/Co trilayer films has been studied in the energy range from 1.0 to 2.0 eV using ballistic electron magnetic microscopy. Both the spin-dependent attenuation lengths of Co and the cumulative polarizing effects of spin-dependent tunneling and transmission across a Co/Cu interface have been determined. For very thin (a few A) Co layers, the latter effects result in a...

متن کامل

Positive spin polarization in Co/Al2O3/Co tunnel junctions driven by oxygen adsorption

Using a first-principles Green’s function technique, we study spin-dependent tunneling in two model realizations of 111 fcc Co/Al2O3/Co tunnel junctions assuming O-terminated crystalline epitaxy in the corundum structure. For the first model, which includes 3 O atoms at the interface, the tunneling current is polarized negatively, just as for the clean Co surface. The second model contains addi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017